2014.2.13 19:23
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."]]
Solution:
The problem is a typical model for backtracking algorithm.
For any pair of queens, their difference in x and y coordinates mustn't be 0 or equal, that's on the same row, column or diagonal line.
The code is short and self-explanatory, please see for yourself.
Total time complexity is O(n!). Space complexity is O(n!) as well, which comes from local parameters in recursive function calls.
Accepted code:
1 // 1CE, 1WA, 1AC, try to make the code shorter, it'll help you understand it better. 2 class Solution { 3 public: 4 vector> solveNQueens(int n) { 5 a = nullptr; 6 res.clear(); 7 if (n <= 0) { 8 return res; 9 }10 11 a = new int[n];12 solveNQueensRecursive(0, a, n);13 delete[] a;14 15 return res;16 }17 private:18 int *a;19 vector > res;20 21 void solveNQueensRecursive(int idx, int a[], const int &n) {22 if (idx == n) {23 // one solution is found24 addSingleResult(a, n);25 return;26 }27 28 int i, j;29 // check if the current layout is valid.30 for (i = 0; i < n; ++i) {31 a[idx] = i;32 for (j = 0; j < idx; ++j) {33 if (a[j] == a[idx] || myabs(idx - j) == myabs(a[idx] - a[j])) {34 break;35 }36 }37 if (j == idx) {38 // valid layout.39 solveNQueensRecursive(idx + 1, a, n);40 }41 }42 }43 44 void addSingleResult(const int a[], int n) {45 vector single_res;46 char *str = nullptr;47 48 str = new char[n + 1];49 int i, j;50 for (i = 0; i < n; ++i) {51 for (j = 0; j < n; ++j) {52 str[j] = '.';53 }54 str[j] = 0;55 str[a[i]] = 'Q';56 single_res.push_back(string(str));57 }58 59 res.push_back(single_res);60 single_res.clear();61 delete []str;62 }63 64 int myabs(const int x) {65 return (x >= 0 ? x : -x);66 }67 };